Time Reversal Cartoon.

High performance com tlng and dept% Imaging the way to go?
Henri Calandra , Rached Abdelkhalek#saurent Derrien

From Scientific American, November 1999 (M. Fink).
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Outline

Introduction to seismic depth imaging
Seismic exploration Challenges
Looking for petascale and more ...
Example: Reverse Time Migration

Conclusions
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Introduction to seismic depth imaging
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Seismic reflection basics
few Inches

Seismic exploration: ~ ultrasound
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Seismic reflection basics
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Depth imaging is an inverse problem

P 3D Pre-stack Depth Migration loop

D Inverse problem

Very CPU intensive

Velocity
update

Less CPU intensive
But human time intensive

Depth migration @

ToTAL
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Outline

P Seismic exploration Challenges
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Seismic exploration Challenges

" Business challenges
" Technical challenges
" Change of mind:
" Size of survey acquisition
" Computing effort and algorithm design

ToTAL



Technical Challenges -
Sept 2005 - Sept 2006 Total In-House 3D PSDM Activity

L_com

o,
‘-’
v

[Exploration Projects l

Diversity of Geological Context
[ Reservoir Projects

From the Exploration to Development Scale




Business Challenges

$/boe Industry “average”
10 Based on 2P fiq.

D Increase of Discovery costs

0.

96-00 97-01 98-02 99-03 00-04

D Increase of CAPEX (seismic & drilling)

Upstream Capex

Idwide Deepwater Drilling Units

te Assessment by Waterdepth Segment B
10 Exploration
i
7777777 : SR = Devefopuent
P Se mlc Costs (NATS)

ﬁﬁ iquné@ a}@f SESSIII SIS I ST I I SIS

6-8000 $/sq km vw~
2-3000.$/sq: ‘km in 200 -

— 7500 + — €000-7500 — 4000-6000 3000-4000

2004 2003 2006(g)

Challenging cycle times
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Challenging cycle time

Integrated Flow chart 3D PSDM Sub Salt - 2000-2004

Y
@y&‘\
Q

Base Salt

/

Imaging Project (400 km?) : 6 months— 4 migrations

Usually no iteration of Salt bodies model
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Challenging cycle time

Integrated Flow chart 3D PSDM Sub Salt - 2005-2007

I[teration

Base Salt

Base 1 Top 2 Base 2
Proc d

RN )
\9) \9) \9)
@"3 \& @ 6 & &

Imaging Project : 6 months (800 km?) — 10 migrations

Full integrated work within asset interpreter & depth imager

Salt Bodies Interpretation & Migration Iterations




Seismic survey acquisition size evolution

2015

2005 2010

2000

1995

1990

100

0.5 —
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Seismic survey acquisition size evolution

100

50

10

0.5 —

2015

2005 2010

1995 2000

1990
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1000
100

50

10

Seismic survey acquisition size evolution

1990

1995 2000 2005 2010 2015
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HPC and Depth imaging technology evolution

TF
10000
A
— [ Hybrid J
! ! computing !
1000 i i i [ Very large ji\/
! ! ! clusters '
— ! | ( Large W: 'n
: : SMP : / \ \Alavio quatlon
/- Depth imaging evolution is closely related to High N>
100 | performance computing progress
- High performance computing is closely related to the number
of CPUS, interconnect, memory ...
10 — -How can we manage large number of CPUS to achieve high
pu— performance
e - What model programming ? ing
1 < =\ - What impact new technology (accelerating technology) will =
Ahave on depth imaging algorithms ? /
0.1 e i i | \\ [/
= PostSDM i | | M
| 1 1 | >
1990 1995 2000 2005 2010 2015 )
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Outline

» Looking for petascale and more ...
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Looking for Petascale and more...
" MPP technology
= Accelerating technology

ToTAL



Looking for Peta-Scale and more...

P 1 Peta-flops ~ 100000 cores , 10 Peta-flops ~ 1000000 cores !!!

mmmmm> 12500 to 125000 nodes !

P Q: How to manage so huge number of compute nodes:
" Heat dissipation
" MTBF ( Mean Time Between Failure)
= Scalability: interconnect, OS, I/0O...

D “Reasonable” number of compute nodes in terms of Heat dissipation,
MTBF,scalability... (1000, 2000, 10000 ?, technology dependant)

D High performance is a trade-off between:
" the number of compute node
" the computing power of a compute node
= Algorithm definition and design

P 2 Solutions:
" High efficiency interconnect capabilities: MPP
" High efficiency node computation capabilities: Accelerating technology

ToTAL



Looking for Peta-Scale and more: MPP technology

MPP technology

" Get access to Huge number of CPUs

= Scalable interconnect

= Easy to manage, more reliable than clusters
= Take advantage of the fast interconnect:

— Programming model, data workflow...
— Efficient numerical implementations,
— Flexible implementations,

— Use the fast interconnect as an extra dimension to reduce disk usage...
" Programming model: efficient and well known: MPI ( + OPENMP ), SHMEM
= Compilers extensions: Co-Array Fortran (CAF), Unified parallel C language (UPC) ????

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0]

2048

4096
MPP implementation of CAM

8192
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Looking for Peta-Scale and more: Mass

Multi core and accelerating technoloqy

" Increasing performances <mmm) Perform more operations per clock
" WE NEED: Tera Flops and more per CPU

= Solutions:
" Increase the frequency rate
" Increase the number of functional units

Technological limitations: heat dissipation, data synch,
physics limitations

" Duplicate the number of computational units inside the same DIE:

" Multi core technology: Dual core, Quad core ... mmm) massive multi
core ?

" “Accelerating technology”: FPGA, GPGU, CELL
" Vector Technology

- Increase parallelism within the CPU

ToTAL



Looking for Peta-Scale and more: Accelerating technology

D Multi-core solution:
" Moore's law
" large number of cores = large performances > TF per socket
" SMP in one socket: 4, 8,...,80, 128... ?

n Q:
" what programming model ?
" data locality and placement,
" data access,
" do we have to specialize cores ?

D Accelerating technology:FPGA,CELL,GPGPU..
"Integrating specialized hardware into seismic application to speed up application
"Technology is evolving very fast and still respects Moore's law

"Q: What programming model ?

" none of the different technologies provides ( until now ) a general and
standard programming environment

" what is the best integration host-accelerator communication ?

ToTAL



Looking for Peta-Scale and more...

P3 programming directions
"Libraries:

— Design efficient libraries( FFTS, Trigonometric functions, stencils
convolution..)

— Use these functions from your C or Fortran Code

— Easy to modify the original code to get advantage of these libraries ( work on
vector or Matrix)

— OK in principle for GPGPU and CELL technology

— NOT efficient for FPGA technology

"Low level language programming,
— Very difficult to get good performances if not expert
— Poor flexibility

"High level language
— Better control of the evolution of the program
— More flexible than using libraries
— Requires very high bandwidth between host and accelerator card
— No standard language or programming model

D Algorithm design has to respect High Performance Computing Rules
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Looking for Peta-Scale and more...

PResearch orientations
" Stop working on FPGA

® Continue working on GPGPU and CELL.:
" CELL:
" multi core technology: SPE (powerpc) +PPE (simple SIMD units)
" PPE program with f90,C (PPE can be seen as the host)

" SPE programming can be: independent task scheduled on each unit,
pipelined parallelism or data parallelism

" model programming is evolving fast, intrinsic, compiling directives (OMP)..
" PPE, SPE communication via DMA ( stream computing)
= Still on going technology

" need more time to be really efficient, will be it still competitive compare to
multi cores, GPGPU or vector technology?

"GPGPU:
" Interesting solution
" Evolving very fast , double precision, larger local memory
= “SIMD” like model programming
" Asynchronous communications between host and GPGU (coming soon)
= Still remains the question of interconnection between host and GPGPU

P 2 main directions: model programming and hardware configuration



Looking for Peta-Scale and more...

D Research orientations

"Model programming
= Standard language: F90, C

" An OpenMP-like extension: HMPP

"Express task parallelism whose codelets are executed/distributed over the
stream cores:
"Homogeneous: pthread
"Heterogenous: CTM, CUDA, Mitrion, ...
"Define a single interface between application and runtime
"Data transfers, synchronization, execution
"A computation can be split over different HW cores
"Define a standardized HW specific interface between runtime and codelet

iImplementation

D Develop “real application” on GPGPU technology based on this model programming

D Establish close relations with vendors

1OTAL



HMPP : Hybrid Multicore Parallel Programming

" Codelet declaration

I$hmpp all codelet, target GPU, inout=phi, inout=u, inout=v, inout=partialu, inout=partialv,
subroutine rtm_update_all_layer_2d_f90( ...)

"data transfer management:
subroutine rtm_solve fwd_2d data transfert o the

IShmpp all advancedload, & GPGPUIN one Shmj

I$hmpp all calleeArg=n1, consf &

I$hmpp all calleeArg=v, const, &

" kernel execution:

I$hmpp all callsite, &

I$hmpp all advancedload:calleeArg=n1, &
I$hmpp all advancedload:calleeArg=v, &

call tm_update_all layer 2d f90(...)
I$Shmpp all delegatedstore, calleeArg=partialu

" Introduce OMP like directives,

= Automatic code generation for specific hardware ( C: Nividia, ATl , Fortran
coming soon)

" Dynamic execution of acclerated kernels.

~
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Looking for Peta-Scale and more...

D Research orientation

"Hardware configuration

" Define the best hardware configuration: Compute node definition,
interconnect....

" Test different solutions:NVIDIA ATI,

® Perform tests on realistic Hardware configuration

" Verify that the general programming model ( domain decomposition over the
nodes, multi parallelism level) is still valid

" Host-GPGU strategy ?

" HOST 1 GPGPU
" HOST 2 GPGPU

" Multi GPGU implmentation ....

1OTAL



Caiman

Cluster Caiman

10 Tflops

VLAN Admin2

Vian Admin 1

Vian Admin 1 + BMC

Reéseau d'entreprise

Infiniband

’ PCI-Express

5x Tesla S870
- 2 Thlops
- 4%128 threads
- 4x1.5 GoRAM

10x Supermicro

- 8 cores{@2GHz
- 16 Go RAM
A

N

Vers réseau Total

IBM X3655
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Outline

» Example: Reverse time Migration

ToTAL



RTM: PreSDM leading edge technolgy

File Settings Help

Profiled: a.out on Tue Apr 08 11:37:41 CEST 2008 Tor 751.437824 seconds

& | & |poprof.out@nm forward 2d.f90@rtm_fwd_basic 2d |~
\-’iew| Line| Filename Function : Time Cost

[ 407 rtm_ftorward_2d. 790 rtm_fiwd_hasic_2d : 481,228 = Bdi 481,228 = B4 =
[ | 517 rEm_Twed_danping_2d gl 0 FEERES = 27% 199426 = 27% =]
[ 917 [parser. 190 stringZpar? §§ || 22. 2528 = 7% 52.2528 = T

[ B24 fromfilestring : 10,8184 = 1% A3.9128 = 9%

[ 317 (rtm_forward_2d. 90 rEm_update_boundary_2d | ; 4.853637 = 1% 4,.84749 = 1%

[ 869 parser, 90 stringdpar : 0.957247 = 0¥ 53,2101 = 7%

[ | 221 |shot_data. 20 read_shot_info : 0.452017 = Ok 61.5144 = 8% —
] SAM r1asses romms oM mhni Time : W=z ] % N_2OA 78l = % =
[ ] : o] | [ = ['e]
“Sort By Time : Sort By Tirme-

91% of cpu time is spent on solving acoustic wave equation based
on explicit time-space finite difference discretisation
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Implementation

1. general algorithm ( host implementation) CPEU

general domain decomposition implementation

. S— B - @)
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Performances (results still in progress)
 Dual Core AMD Opteron Processor 280 - 16Go

« NVIDIA Quadro FX4600 (12 Multiproc- 768Mo)

grid size CPU 4CPUs CPU+GPU GPU
model1 (688*489, 1346 336 432 7,29 6,18 4,78 2,9
time steps)
model2 (2421*811, 4131 1 963 431 118 52,22 29,37 14,9
time steps)
model3 (4720*4361, 20 583 920 2384 1169 846,2 258
9011 time steps)
-~ 2500 ey
~ CPU+GPU ——
E 2000 | 4 EPU -
: y —
Y 15ee | i
¥
5 1eee
=
¥ 588
=
=

a De+d6 le+B7

1,5e+87

Taille du domnaine {pts}

2e+87

2,95e+8 @
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FD kernel implementation

threads block

shared memory

Mémoire globale
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FD kernel implementation

threads block

shared memory

global memory
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FD kernel implementation

threads block

Shared memory

global memory
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Minimize Host-GPU communication

DFirst iteration: send all the data to GPGPU

D all other iteration exchange only few data

[ memcopy
[1 damping_layer
Bl CPU Time Overhead

C o0

m3g — -

B537 —

5228

3921

2614 —

1307

1 33
Method Mumber

65

97

129

161

193

225

257

289

izl
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Block size opt

D how to choose the optimal block size ?

P Only cho
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Memory pading

method=[ damping_layer ] gputime=[ 4047.520 ] cputime=[ 4101.000 ] occupancy=[ 0.667 ] gst_incoherent=[ 737696 ]

Temps d'exécution en fonction du padding
[

Temps d exécution (s)

u
padding

method=[ damping_layer ] gputime=[3404.984] cputime=[3466.478] occupancy=[ 0.667 ] gst_incoherent=[ 0 ]
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Optimization: avoid branch statements

idleThreads

threads

Shared memory
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Resolve memory bank conflicts

shared memory

Same active threads access the same
memory bank

method=[damping_layer] gputime=[ 3405.984 ] cputime=[ 3461.000 ] occupancy=[ 0.667 ] warp_serialize=[ 30286 ]

shared memory

Solution: padding

method=[damping_layer] gputime=[ 3367.104 ] cputime=[ 3420.000 ] occupancy=[ 0.667 ] warp_serialize=[ O ]

ToTAL



Increase the multi processor warp occupancy

Maximum occupancy is limited by the maximum number of registers

per thread (16)
24

—y
oo

Multiprocessor
Warp Occupancy
e
%]

[=3]

16 20 24 28 32
Registers Per Thread

0 4 8 12

method=[ damping_layer] gputime=[ 3425.056 ] cputime=[ 3476.000 ] occupancy=[ 0.667 ]

EX: decompose kernel in two parts.

method=[ damping_layer ] gputime=[ 2294.816 ] cputime=[ 2351.000 ] occupancy=[ 1.000 ]
method=[ damping_layer _update_pml] gputime=[ 1833.824 ] cputime=[ 1887.000 ] occupancy=[ 1.000 ]
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«Velocity model:
6400”1500 grid
size

« GPU: 3.6s

(12808 time steps)

«2 CPUs: 0.5s

(1778 time steps). iizggﬁ

®Ft)

10000 20000 30000 40000 G000 BO000 TO000

160s overall computation time

1,48e+04

1,233e+04
9360
7330

320
#i2 10000

20000
zift)
Modele de witesse Sigshee
0 10000 20000 20000 40000 GaG00 EQ000 P00
0 o g :
0,1278
0, 06738
0, Q07008
-0, 05337
Ft;g’llz?
20000
z(ft)

160s de modelisation sur GPU

o 000 20000 20000 4000

N

G [=lulele] Fr000

10000

20000

J0000
=(ft)

160s de modelisation sur 2 CPUs
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160s overall computation time

« Velocity model:
6400*1500 grid
size

« GPU: 3.6s
(12808 time steps)

« 4 CPUs: 0.85s
(3054 time step).

®Ft)

10000 20000 30000 40000 G000 BO000 TO000

0

1,48e+04
1,233e+04

9860
7390
g20
£ 10000
20000
20000
z(ft)
Modele de witesse Sigshee
wiFe)
0 10000 20000 20000 40000 G000 EOO00 FO000
0 = - =
00,1278
0, 06738
0, 007008
-0, 05337
Ft;g'llz?
20000
z(ft)
160s de modelisation sur GPU
={FL)
0 o 10000 200000 F0000 SO0 SO000 EOO00 T
10000
20000

0,8637
0,1625
-0.5287
-1, 280000
+1.911

160z de modelisation sur 4 CPls
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actual limitations

P Host-GPPGU communication

GPUTime
0.00% 140% b.81% 1021% 1361% 17.02% 2042% 1382% 1723% 30.63% 34.04% 3744% 40.84% 44.25% 4765% 51.05%

memeapy
damping_layer

D00 340% 6.81% 1021% 136L% 17.02% 2042% 1382% 2723% 3083% 04% 744% 40.84% 4425% 4765% 5105%

P improvement ?
" Host-GPGPU asynchronous communication
" Higher bandwidth between host GPGPU
" more integrated solution
" global memory access ?
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Conclusion

P Depth imaging is very challenging

D Explore new directions to acheive high performance computing

D Accelerating technology is one way to be investigated

P GPGPU can be one way to accelerate

D but still progress need to be achieved in integration, communication...
D what % of theoretical peak performance can we obtain ?

P what impact accelerated compute node on interconnect and load
balance..

D Test on large configuration ( summer 2008)
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